hydrous $Na[S_2CNMe_2]$ to $[WOCl_2(PMe_3)_3]$ gave $[WO-(PMe_3)(S_2CNMe_2)_2]$ (12).³⁸ The temperature dependence of the dynamic ¹H NMR spectra of 12 has been interpreted in terms of a fluxional process (possibly involving rupture of a W-S bond), which equilibrates the inequivalent ligands in a structure with a cis orientation of the oxo and phosphine ligands—the appearance of four distinct benzylic resonances in ¹³C spectra of 7 suggests a similar low-symmetry structure (Scheme III), but we see no comparable evidence for a low-energy fluxional rearrangement of 7. The low symmetry within 7 was further confirmed by the observation in ¹H NMR spectra of a complex (18 resolved lines) resonance for the phosphine methylenes—this was closely simulated by PANIC¹¹ on the assumption that the methylene hydrogens are diastereotopic (see Experimental Section for parameters).

While this work was being prepared for publication, we were informed that Yu and Holm had independently discovered that $[WO_2(S_2CNR_2)_2]$ ($R_2 = Me_2$, $(CH_2)_5$) can be reduced to W(V) oxo-bridged dimers $[{WO}(S_2CNR_2)_2]_2O]$ by $P(OMe)_{3'}$ ³⁹ from which they inferred the intermediate formation of the W(IV) oxo species $[WO(S_2CNR_2)_2]$. Our preparation of 7 remains the only case in which oxo atom transfer is used to reduce a $W^{VI}O_2$ complex to an isolated $W^{IV}O$ complex, and since a trialkylphosphine would be expected to be a somewhat less powerful oxo acceptor than a trialkyl phosphite (ca 13 kcal mol⁻¹ from the data in Table V of ref 18), the success of reduction with PEt_3 suggests that oxo transfer from $W^{VI}O_2$ complexes may be less difficult than had been assumed.

It is notable that we have only been able to isolate a PEt₃ adduct of $[WO[S_2CN(CH_2Ph)_2]_2]$ (11)—attempts to limit the reduction of 6 to the production of 11 by using 1 equiv of PEt₃ have not led to tractable products, and we suspect that, in sharp contrast to the analogous molybdenum complexes, W(IV) oxo complexes $[WO(S_2CNR_2)_2]$ are only stable as adducts of donor ligands.

Conclusions

Photochemical. The sensitivity of $[(MoO\{S_2CN(CH_2Ph)_2\}_2)O]$ (4) and of $[(WO\{S_2CN(CH_2Ph)_2\}_2)O]$ (5) to ambient lighting is most reasonably interpreted in terms of facile photodisporportionation into the $M^{IV}O$ and $M^{VI}O_2$ complexes 8 plus 9 and 6 plus 11, respectively, and the photoacceleration of the oxidation of 5 supports this suggestion. In conjunction with our previous observation of photodisproportionation of 1^{2+4} and Richman's demonstration of photodisproportionation of [{Fe(TPP)}_2O],⁵ these results imply that photodisproportionation is probably a general reaction of complexes with a linear oxo bridge between two metal centers with odd (d¹-d¹ and d⁵-d⁵ in the cases above) electron centers.

We have not yet carried out detailed photophysical studies of 4 or 5, and these will be experimentally challenging in both cases for a variety of reasons-the facility of the equilibrium thermal disproportionation of 4 precludes simple classical quantum yield studies and trapping experiments, while the limited solubility of 5 and the apparent inaccessibility by independent synthesis of the WIVO product 11 restricts photophysical studies of disproportionation of 5. Until such studies have been completed, detailed speculation on the mechanism of the photodisproportionation is inappropriate, but it is certainly possible that it occurs from a distorted charge-transfer excited state as established by Richman for the [{Fe(TPP)}2O] case.5b It is interesting that the photoacceleration of the oxidation of 5 can be carried out by using long wavelength ($\lambda > 515$ nm) light, since this would indicate that the intense visible absorption at 517 nm, which must have chargetransfer character, is photoactive.

Synthetic. Controlled oxidation of $[W(CO)_3[S_2CN(CH_2Ph)_2]_2]$ (10) allows access to the W(VI) dioxo complex $[WO_2[S_2CN-(CH_2Ph)_2]_2]$ (6) or the d¹-d¹ dimer $[(WO\{S_2CN(CH_2Ph)_2]_2)_2O]$ (5). Reduction of 6 with PEt₃ leads to $[WO(PEt_3)]_{S_2}CN-(CH_2Ph)_2]_2]$ (7), a PEt₃ adduct of the W^{IV}O complex, which would be the expected product of oxygen atom transfer from 6 to PEt₃—this is the first example in which reaction of a W(VI) dioxo complex with an oxygen atom acceptor has been observed to give an isolable W(IV) oxo complex.

Acknowledgment. This work was supported in part by the Office of Naval Research. We thank Professor R. H. Holm for prepublication communication of the information in ref 18.

Supplementary Material Available: Tables of full crystal data, anisotropic temperature factors, and hydrogen atom coordinates for [(WO- $\{S_2CN(CH_2Ph)_2\}_2$)_O] (3 pages); a listing of calculated and observed structure factors (22 pages). Ordering information is given on any current masthead page.

Contribution from the Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstrasse 34-36, D-1000 Berlin 33, FRG

Regioselective Coupling of a Fluoromethylidyne Ligand of Nonacarbonylbis(μ_3 -fluoromethylidyne)triiron with Alkynes

Dieter Lentz* and Heike Michael-Schulz

Received December 11, 1989

Nonacarbonylbis(μ_3 -fluoromethylidyne)triiron, Fe₃(CO)₉(μ_3 -CF)₂ (1), reacts with alkynes H-C=C-R (2a-f), forming diferra-allyl clusters Fe₃(CO)₈(μ_3 -CF)(μ_3 -CF-CH-CR) (3a-f). According to the spectroscopic data of the products 3a-f, the carbon-carbon bond formation occurs selectively at the sterically less hindered site of the alkyne. The structure of Fe₃(CO)₈(μ_3 -CF)(μ_3 -CF-CH-C-O-C₂H₅) (3c) has been established by an X-ray crystal structure determination, monoclinic, P_2_1/c , a = 15.396 (4) Å, b = 8.153 (4), c = 14.915 (3) Å, $\beta = 103.24$ (6)°. With the alkynes H₃C-C=C-R (2g-I), the regioselectivity of the carbon-carbon bond formation is less distinct. The clusters Fe₃(CO)₈(μ_3 -CF)[μ_3 -CF-C(CH₃)-CR] (3(I)g-I) and the isomers Fe₃(CO)₈(μ_3 -CF)[μ_3 -CF-C(CH₃)-CR] (3(I)g-I) and the electronic effects of the substituent R.

Introduction

In contrast to the well-established chemistry of the nonacarbonyl(μ_3 -alkylidyne)tricobalt clusters¹ and their derivatives obtained by metal-exchange reactions,² only a few nonacarbonylbis(μ_3 -alkylidyne)triiron clusters Fe₃(CO)₉(μ_3 -CCH₃)-(C-OCH₃),³ Fe₃(CO)₉(μ_3 -CF)₂,⁴ Fe₃(CO)₉(μ_3 -C-CH₃)(μ_3 -C-

⁽³⁸⁾ Carmona, E.; Sachez, L.; Poveda, M. L.; Jones, R. A.; Hefner, J. G. Polyhedron 1983, 2, 797.

⁽³⁹⁾ Holm, R. H. Personal communication. Details of this work have been published.¹⁸

Kemmitt, R. D. W.; Russel, D. R. In Comprehensive Organometallic Chemistry; Wilkinson, G., Ed.; Pergamon: Oxford, England, 1982; Vol. 5. Penfold, B. R.; Robinson, B. H. Acc. Chem. Res. 1973, 6, 73. Seyferth, D. Adv. Organomet. Chem. 1976, 14, 97.

Beurich, H.; Vahrenkamp, H. Chem. Ber. 1982, 115, 2385. Beurich, H.; Blumhofer, R.; Vahrenkamp, H. Chem. Ber. 1982, 115, 2409.
 Wong, W.-K.; Chiu, K. W.; Wilkinson, G.; Galas, A. M.-R.; Thorn-

⁽³⁾ Wong, W.-K.; Chiu, K. W.; Wilkinson, G.; Galas, A. M.-R.; Thornton-Pett, M.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1983, 1557.

Reaction of $Fe_3(CO)_9(\mu_3-CF)_2$ with Alkynes

 OC_2H_5 , ⁵ $Fe_3(CO)_9(\mu_3-CH)(\mu_3-C-O-CH_3)$, ⁶ $Fe_3(CO)_9(\mu_3-CH)(\mu_3-C-O-CH_3)$ CH) $(\mu_3$ -C-N(CH₃)₂),⁷ Fe₃(CO)₉ $(\mu_3$ -CR) $(\mu_3$ -CR'),⁸ Fe₃(CO)₉- $(\mu_3 - C - O - CH_3)_2$,⁹ Fe₃(CO)₉ $(\mu_3 - CCI)_2$,¹⁰ Fe₃(CO)₉ $(\mu_3 - CBr)(\mu_3 - CBr)$ CCOOR),¹⁰ and Fe₃(CO)₆(η^{6} -C₆H₆)(μ_{3} -CCl)(μ_{3} -C-COOEt)¹⁰ have been recently synthesized. Mathieu et al. have studied the reactivity of $Fe_3(CO)_9(\mu_3-C-CH_3)(\mu_3-C-OC_2H_5)$ with alkynes and obtained ferrole type closo clusters.⁵ Depending on the alkyne, they obtained several isomers. In the reaction of $Fe_3(CO)_9(\mu_3-CF)_2$ with various alkynes $R-C \equiv C-R$ no ferrole formation was observed.¹¹ Ferra-allyl clusters $Fe_3(CO)_8(\mu_3-CF)(\mu_3-CF-CR-CR)$, which possess a capped nido structure, were obtained as the only product. With the phosphaalkyne t-C₄H₉-C \equiv P, however, a ferraphosphacyclopentadiene ring was formed by carbon-carbon and carbon-phosphorus bond formation.¹² Only two further diferra-allyl clusters $(\eta^5-C_5H_2Et_3)Fe_3(CO)_7(\mu_3-CH-CH-CEt)^{13}$ and HFe₃(CO)₉ $(\mu_3-CMe-CPh-CH)^{14}$ have been reported. There exist several dimetalla-allyl clusters of ruthenium and osmium;15 some of them have been prepared by an alkylidyne-alkyne coupling reaction.¹⁶ In continuation of our studies on the reactivity of nonacarbonylbis(μ_2 -fluoromethylidyne)triiron, we have studied the reactions of $Fe_3(CO)_9(\mu_3-CF)_2$ with asymmetric alkynes H-C=C-R and H₃C-C=C-R in order to obtain information about the regioselectivity of the reactions.

Experimental Section

All reactions were carried out under dry argon by using standard Schlenk tube and vacuum techniques. Volatile alkynes were handled on a conventional vacuum line and amounts were determined by PVT techniques. Photolyses were carried out in a 100-mL or 250-mL Pyrex glass photoreactor using a high-pressure mercury lamp (Philips HPK 125 W). ¹H NMR, ¹⁹F NMR, and ¹³C NMR spectra were recorded by using a Jeol FX 90Q instrument using TMS, CFCl₃, and TMS or solvent signals as reference standards. The product composition and isomeric ratios were monitored by TLC chromatography and, directly after filtration of the reaction mixture over silica to remove paramagnetic decomposition products, by ¹⁹F NMR spectroscopy. Computer simulations of the ABC₃ spectra were performed with the LAOCN3 program.¹⁷ IR

- (4) Lentz, D.; Brüdgam, I.; Hartl, H. Angew. Chem. 1985, 97, 115; Angew. Chem., Int. Ed. Engl. 1985, 24, 119
- (5) Nuel, D.; Dahan, F.; Mathieu, R. J. Am. Chem. Soc. 1985, 107, 1658.
- (6) Hriljac, J. A.; Shriver, D. F. J. Am. Chem. Soc. 1987, 109, 6010.
- Cabrera, E.; Daran, J. C.; Jeannin, Y. J. Chem. Soc., Chem. Commun. (7)1988, 607.
- (8) Nuel, D.; Mathieu, R. Organometallics 1988, 7, 16. Suades, J.; Dahan, F.; Mathieu, R. Organometallics 1988, 7, 47.
- Aradi, A. A.; Grevels, F.-W.; Krüger, C.; Raabe, E. Organometallics 1988, 7, 812.
- (10) Lentz, D.; Michael, H. Inorg. Chem. 1989, 28, 3396.
- (11) Lentz, D.; Michael. H. Chem. Ber. 1988, 121, 1413.
- (12) Lentz, D.; Michael, H. Angew. Chem. 1989, 101, 330; Angew. Chem., Int. Ed. Engl. 1989, 28, 321.
- Sappa, E.; Tiripicchio, A.; Lanfredi, A. M. M. J. Chem. Soc., Dalton (13)Trans. 1978, 552.
- (14) Nuel, D.; Mathieu, R. Organometallics 1988, 4, 16.
- (15) Cox, A.; Woodward, P. J. Chem. Soc. A 1971, 3599. Evans, M.; Hursthouse, M.; Randall, E. W.; Rosenberg, E.; Milone, L.; Valle, M. J. Chem. Soc., Chem. Commun. 1972, 545. Bruce, M. I.; Cairns, M. ; Green, M. J. Chem. Soc., Dalton Trans. 1972, 1293. Gambino, O.; Valle, M.; Aime, S.; Vaglio, G. A. Inorg. Chim. Acta 1974, 8, 71. Aime, S.; Jannon, G.; Osella, D.; Deeming, A. J. J. Organomet. Chem. 1981, 214, C15. Humphries, A. P.; Knox, S. A. R. J. Chem. Soc., Dalton Trans. 1975, 1710. Castiglioni, M.; Milone, L.; Osella, D.; Vaglio, G. A.; Valle, M. Inorg. Chem. 1976, 15, 394. Aime, S.; Osella, D.; Arce, A. J.; Deeming, A. J.; Hursthouse, M. B.; Galas, A. M. R. J. Chem. A. J.; Deeming, A. J.; Hursthouse, M. B.; Galas, A. M. R. J. Chem. Soc., Dalton Trans. 1984, 1981. Aime, S.; Jannon, G.; Osella, D.; Arce, A. J.; Deeming, A. J. J. Chem. Soc., Dalton Trans. 1984, 1987. Deeming, A. J.; Hasso, S.; Underhill, M. J. Chem. Soc., Dalton Trans. 1975, 1614. Hanson, B. E.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R. J. Chem. Soc., Dalton Trans. 1980, 1852. Skinner, D. M.; Rosen-berg, E.; Brackner-Novak, J.; Aime, S.; Osella, D.; Gobetto, R.; Milone, L. Organometallics 1988, 7, 856.
- (16) (a) Beanan, L. B.; Rahman, Z. A.; Keister, J. B. Organometallics 1983, 2, 1062. Beanan, L. R.; Keister, J. B. Organometallics 1985, 4, 1713. (b) Churchill, M. R.; Ziller, J. W.; Shapley, J. R.; Yeh, W.-Y. J. Organomet. Chem. 1988, 353, 103.

spectra were taken on a Perkin-Elmer 883 instrument. Mass spectra were obtained on a Varian MAT 711 spectrometer (80 eV). $Fe_3(CO)_9(\mu_3$ -CF)₂⁴ (1), H-C=C-CH₃¹⁸ (2a), H-C=C-O-C₂H₅¹⁹ (2c), H-C=C-CF₃²⁰ (2e), H-C=C-SF₅²¹ (2f) H₃C-C=C-O-C₂H₅¹² (2i), and H₃C- $C = C - C(H)(CH_1)^{23}$ (2h) were prepared by literature methods. The other alkynes are commercially available and were used as received. Fe₃(CO)₈(μ_3 -CF)(μ_3 -CF-CH-CCH₃) (3a). Fe₃(CO)₉(μ_3 -CF)₂ (1)

(110 mg, 0.23 mmol) was dissolved in 100 mL of n-hexane in a 100-mL photoreactor. The reactor was cooled with liquid nitrogen, and HC= CCH₃ (2a) (7 mmol) was condensed onto the reaction mixture. The reaction mixture was then irradiated for 10 min at 15 °C. Most of the solvent was removed under vacuum, and the remaining solution was filtered through a layer of silica. After the solvent was removed under vacuum, the residue was dissolved in a minimum amount of n-pentane and recrystallized at -20 °C, yielding 3a (54 mg, 47%) as green crystals, mp 108–109 °C. MS (80 eV) [m/z (%, assignment)]: 494 (17 M⁺), 466 (48, M⁺ – CO), 438 (24, M⁺ – 2CO), 354 (39 M⁺ – 5CO), 326 (81, M⁺ -6CO), 298 (48, M⁺ -7CO), 270 (80 M⁺ -8CO), and smaller fragment ions. High-resolution MS of the molecular ion: calc, m/e493.7924; found, m/e 493.7922.

 $Fe_3(CO)_8(\mu_3-CF)(\mu_3-CF-CH-CC_6H_5)$ (3b). $Fe_3(CO)_9(\mu_3-CF)_2$ (1) (200 mg, 0.42 mmol) and HC = CC_6H_5 (2b) (46 μ L, 0.42 mmol) were added to 100 mL of n-pentane. The reaction mixture was irradiated in a photoreactor for 25 min at 15 °C. The progress of the reaction was monitored by TLC (n-pentane). After complete reaction the solvent was removed under vacuum. The residue was dissolved in a minimum amount of CH2Cl2 followed by preparative TLC (n-pentane) and crystallization from *n*-pentane to give 3b (109 mg, 47%) as green crystals, mp 120–121 °C. MS (80 V) [m/e (%, assignment)]: 556 (8, M⁺), 528 (53, M⁺ – CO), 500 (68, M⁺ – 2CO), 472 (32, M⁺ – 3CO), 444 (67, $M^+ - 4CO$, 416 (100, $M^+ - 5CO$), 388 (19, $M^+ - 6CO$), 360 (58, $M^+ - 7CO$), 332 (85, $M^+ - 8CO$), and smaller fragment ions. High-resolution MS of the molecular ion: calc, m/e 555.8084; found, 555.8079.

 $Fe_3(CO)_8(\mu_3-CF)(\mu_3-CF-CH-COC_2H_5)$ (3c). $Fe_3(CO)_9(\mu_3-CF)_2$ (1) (291 mg, 0.6 mmol) and HC= COC_2H_5 (2c) (120 mg, 1.8 mmol) were added to 100 mL of n-pentane. The solution was irradiated in a photoreactor for 80 min at 15 °C. The reaction mixture was then pumped to dryness followed by dissolution of the crude product in n-pentane and purification by column chromatography (silica, n-pentane). A violet fraction was recrystallized from n-pentane at -78 °C to give 3c (81 mg, 26%) as dark green crystals, mp 119-120 °C. MS (80 eV) [m/e (%, assignment)]: 524 (37, M⁺), 496 (49, M⁺ - CO), 468 (37, M⁺ - 2CO), 440 (37, M^+ – 3CO), 412 (96, M^+ – 4CO), 384 (63, M^+ – 5CO), 356 (50, M^+ 6CO), 328 (57, M^+ – 7CO), 300 (100, M^+ – 8CO). Highresolution MS of the molecular ion: calc, m/e 523.8028; found, m/e523,8020

 $Fe_3(CO)_8(\mu_3-CF)[\mu_3-CF-CH-CSi(CH_3)_3]$ (3d). $Fe_3(CO)_9(\mu_3-CF)_2$ (1) (284 mg, 0.59 mmol) and HC=CSi(CH₃)₃ (2d) (120 mg, 1.2 mmol) were added to 100 mL of n-pentane and irradiated in a photoreactor for 10 min. After complete reaction (TLC, n-pentane) the reaction mixture was filtered through a layer of silica (n-pentane), and the solvent was removed under vacuum. Crystallization from n-pentane at -78 °C gave 3d (195 mg, 59%) as dark green crystals, mp 57-58 °C. MS (80 eV) $[m/e (\%, assignment)]: 552 (1, M^+), 524 (8, M^+ - CO), 496 (4, M^+)$ - 2CO), 468 (8, M⁺ - 3CO), 440 (49, M⁺ - 4CO), 412 (41, M⁺ - 5CO), 384 (57, M⁺ - 6CO), 356 (39, M⁺ - 7CO), 328 (100, M⁺ - 8CO). High-resolution MS of the molecular ion: calc, m/e 551.8161; found, m/e 551.8168.

 $Fe_3(CO)_8(\mu_3-CF)(\mu_3-CF-CH-CCF_3)$ (3e). $Fe_3(CO)_9(\mu_3-CF)_2$ (1) (300 mg, 0.63 mmol) was added to 100 mL of n-pentane in a photoreactor. The solution was cooled with liquid nitrogen, and HC=CCF3 (2e) (2 mmol) was condensed into the photoreactor. The reaction mixture was warmed to -60 °C and irradiated for 5 h. The solvent was removed under vacuum, and the residue was dissolved in a minimal

- (18) Hurd, C. D.; Meinert, R. N.; Spence, L. U. J. Am. Chem. Soc. 1930, 52, 1138.

- (19) Jones, E. R. H.; Eglinton, G.; Whiting, M. C.; Shaw, B. L. Organic Syntheses; Wiley: New York, 1963; Collect. Vol. IV, p 404.
 (20) Finnegan, W. G.; Norris, W. P. J. Org. Chem. 1963, 28, 1139.
 (21) Wessel, J.; Kleemann, G.; Seppelt, K. Chem. Ber. 1983, 116, 2399.
 (22) Miller, H. N.; Greenlee, K. W.; Drefer, J. M.; Board, C. E. J. Org. Chem. 1954, 19, 1882.
- (23)Alkema, H. J.; Ahrens, J. F. Recl. Trav. Chim. Pays-Bas 1960, 79, 1257.

⁽¹⁷⁾ Bothner-By, A. A.; Castellano, S. M. LAOCN3 (A Program for Computer Simulation of Complex NMR Spectra. In Computer Programs for Chemistry; de Tar, D. F., Ed.; W. A. Benjamin, Inc.: New York, 1968; Vol. 1, Chapter 3. Clark, M.; Thrasher, J. S. MS-DOS Version for IBM Personal Computer. The University of Alabama, Tuscaloosa, AL

amount of dichloromethane. Purification by column chromatography (silica, n-pentane) gave a green main fraction, which was eluated first. Removal of solvent and crystallization from n-pentane gave 3e (130 mg, 18%) as green crystals, mp 99–100 °C. MS (80 eV) [m/e (%, assignment)]: 548 (18, M⁺), 520 (40, M⁺ – CO), 492 (9, M⁺ – 2CO), 464 (20, M⁺ – 3CO), 436 (15, M⁺ – 4CO), 408 (33, M⁺ – 5CO), 380 (69, M⁺ – 6CO), 352 (14, M⁺ – 7CO), 324 (59, M⁺ – 8CO). High-resolution MS of the molecular ion: calc, m/e 547.7639; found, m/e 547.7639.

 $Fe_3(CO)_8(\mu_3-CF)(\mu_3-CF-CH-CSF_5)$ (3f). A photoreactor with a solution of Fe₃(CO)₉(µ₃-CF)₂ (1) (200 mg, 0.42 mmol) in 100 mL of n-pentane was cooled with liquid nitrogen, and HC=CSF₅ (2f) (0.7 mmol) was condensed into the photoreactor. The solution was warmed to 0 °C and irradiated for 4 h. The solvent was removed under vacuum, and the residue was dissolved in a minimum amount of CH2Cl2. Purification by column chromatography (silica, n-pentane) and crystallization from n-pentane at -78 °C gave 3f (38 mg, 14%) as green crystals, mp 87-89 °C. MS (80 eV) [m/e (%, assignment)]: 578 (21, M⁺ – CO), 550 (5, M⁺ – 2CO), 442 (14, M⁺ – 2CO – SF₄), 414 (10, M⁺ – 3CO – SF₄), 386 (15, M⁺ – 4CO – SF₄), 358 (24, M⁺ – 5CO – SF₄), 330 (48, $M^{+} - 6CO$), 302 (79, $M^{+} - 7CO - SF_{4}$), 274 (52, $M^{+} - 8CO - SF_{4}$), and smaller fragment ions. High-resolution MS of the ion $M^+ - CO$: calc, m/e 577.7377; found, m/e 577.7379.

 $Fe_3(CO)_8(\mu_3-CF)(\mu_3-CF-CCH_3-CC_2H_5)$ (3(I)g) and $Fe_3(CO)_8(\mu_3-CF)(\mu_$ CF)(μ_3 -CF- CC_2H_5 - CCH_3) (3(II)g). $Fe_3(CO)_9(\mu_3$ - $CF)_2$ (1) (200 mg, 0.42 mmol) and $CH_3-C \equiv C-C_2H_5$ (2g) (60 μ L, 0.6 mmol) were dissolved in 100 mL of n-pentane. The solvent was removed under vacuum, and the residue was dissolved in a minimum of CH₂Cl₂ and filtered through a layer of silica by using n-pentane as an eluent. Removal of the solvent under vacuum gave 3g (111 mg, 50.6 %) as a green waxy material, which according to the NMR spectra consists of a mixture of the two isomers **3(I)g** and **3(II)g**. MS (80 eV) [m/e (%, assignment)]: 522 (9, M⁺), 494 (39, M⁺ - CO), 466 (20, M⁺ - 2CO), 438 (11, M⁺ -3CO), 410 (30, M^+ – 4CO), 382 (44, M^+ – 5CO), 354 (100, M^+ – 6CO), 326 (71, M^+ – 7CO), 298 (68, M^+ – 8CO), and smaller fragment ions. High-resolution MS of the molecular ion: calc, m/e 521.9697; found, m/e 521.8230.

 $Fe_3(CO)_8(\mu_3-CF)[\mu_3-CF-C(CH_3)-CCH(CH_3)_2]$ (3(1)h) and $Fe_3-CF-C(CH_3)-CCH(CH_3)_2$ $(CO)_{g}(\mu_{3}-CF)[\mu_{3}-CF-CCH(CH_{3})_{2}-CCH_{3}]$ (3(II)h). Fe₃(CO)₉($\mu_{3}-CF)_{2}$ (1) (180 mg, 0.38 mmol) and CH₃C=CCH(CH₃)₂ (2h) (50 μL, 0.5 mmol) were added to 100 mL of n-pentane. The solution was irradiated for 25 min in a photoreactor. Most of the solvent was removed under vacuum, and the remaining solution was filtered over silica. The solvent of the green solution was removed under vacuum, and the residue was dried in vacuum. 3i (130 mg, 68%) was isolated as a green oily liquid, which contains both isomers in a ratio of about 2:1. MS (80 eV) [m/e (%, assignment)]: 536 (1, M⁺), 508 (16, M⁺ - CO), 480 (10, M⁺ - 2CO), 452 (9, M⁺ - 3CO), 424 (38, M⁺ - 4CO), 396 (69, M⁺ - 5CO), 368 (73, M⁺ - 6CO), 340 (89, M⁺ - 7CO), 312 (100, M⁺ - 8CO), and smaller fragment ions. High-resolution MS of the molecular ion: calc, m/e 507.8442; found, m/e 507.8439.

 $Fe_3(CO)_8(\mu_3-CF)(\mu_3-CF-CCH_3-COC_2H_5)$ (3(I)i). $Fe_3(CO)_9(\mu-CF)_2$ (1) (200 mg, 0.42 mmol) and CH₃C=COC₂H₅ (2i) (58 mg, 0.84 mmol) were added to 100 mL of *n*-pentane. The solution was irradiated in a photoreactor for 20 min. Purification by preparative TLC (n-pentane) gave two fractions. Crystallization of the main fraction from n-pentane at -20 °C gave 3(I)i (97 mg, 43%), mp 107-108 °C. MS (80 eV) [m/e (%, assignment)]: 538 (29, M⁺), 510 (91, M⁺ - CO), 482 (57, M⁺ - 2CO), 454 (37, M⁺ - 3CO), 426 (100, M⁺ - 4CO), 398 (65, M⁺ - 5CO), 370 (69, M⁺ - 6CO), 342 (94, M⁺ - 7CO), 314 (94, M⁺ - 8CO), and smaller fragment ions. High-resolution MS of the molecular ion: calc, m/e 537.8186; found, m/e 537.8184.

 $Fe_{3}(CO)_{8}(\mu_{3}-CF)(\mu_{3}-CF-CCH_{3}-CC_{6}H_{5})$ (3(1)k). $Fe_{3}(CO)_{9}(\mu_{3}-CF)_{2}$ (1) (200 mg, 0.42 mmol) and $CH_3C = CC_6H_5$ (2k) (100 mg, 0.84 mmol) were added to 100 mL of n-pentane. The solution was irradiated for 25 min in a photoreactor. The solvent was removed under vacuum. The residue was dissolved in a minimum amount of CH₂Cl₂, and the mixture was filtered through a layer of silica (n-pentane). Removal of solvent and crystallization from *n*-pentane at -78 °C gave 3(1)k (94 mg, 40%) and crystallation from repeated at (3 - C = 26 - 36) (m/e = 40, mg, -40, mg, -40fragment ions. High-resolution MS of the molecular ion: calc, m/e569.8235; found, m/e 569.8235

 $Fe_3(CO)_8(\mu_3-CF)[\mu-CF-C(COOCH_3)-CCH_3)$ (3(II)l). $Fe_3(CO)_9 (\mu_3 - CF)_2$ (1) (100 mg, 0.2 mmol) and $CH_3 - C = COOCH_3$ (21) (30 mg, 0.3 mmol) were added to 100 mL of n-pentane. The solution was irradiated for 25 min by using a photoreactor. The solvent was removed in vacuo. The residue was dissolved in a minimum of dichloromethane, and the mixture was filtered through a thin layer of silica by using n-pentane

3(II)g-1

	9	h	i i	k	<u> </u>
R	C ₂ H ₅	i - C ₃ H ₇	OC2H5	C ₆ H ₅	СООСН3
3(I): 3(I)	13	2.0	10	>99	< 1/40

Table I. Crystallographic Data for (00) CE CH COC H (10)

$e_3(CO)_8(\mu_3 - CF)(\mu_3 - CF - CF)$	JC ₂ Π ₃) (JC)
$\begin{array}{c} \text{formula } C_{14}H_6F_2Fe_3O_9\\ a = 15.396 \ (4) \ \text{\AA}\\ b = 8.153 \ (4) \ \text{\AA}\\ c = 14.915 \ (3) \ \text{\AA}\\ \beta = 103.24 \ (6) \ \text{deg}\\ V = 18224 \ \text{\AA}\\ \end{array}$	fw 523.8 space group $P2_1/c$ (No. 14) $\lambda = 0.71069$ Å $d_{calcd} = 1.92$ g cm ⁻³ μ (Mo K α) = 25.0 cm ⁻¹
$V = 1822.4 A_3$ Z = 4	$R(F_o) = 0.032$

3(I)g-1

as an eluent. Removal of the solvent and crystallization from n-pentane at -78 °C gave 3(II)I (46 mg, 42%) as dark green crystals, mp 94-95 °C. MS (80 eV) [m/e (%, assignment)]: 552 (19, M⁺), 524 (59, M⁺ – CO), 496 (34, M⁺ – 2CO), 468 (19, M⁺ – 3CO), 440 (18, M⁺ – 4CO), 412 (47, M⁺ - 5CO), 384 (52, M⁺ - 6CO), 356 (100, M⁺ - 7CO), 328 (77, M^+ – 8CO), and smaller fragment ions. High-resolution MS of the molecular ion: calc, m/e 551.7977; found, m/e 551.7989

X-ray Crystal Structure Determination of Fe₃(CO)₈(µ₃-CF)(µ₃-CF-**CH-COC**₂**H**₅) (3c). A suitable crystal (0.18 \times 0.35 \times 0.42 mm³) of 3c, obtained by slow cooling of a *n*-hexane solution, was sealed in a glass capillary. The data were collected by using a STOE diffractometer and reduced to structure factors by correction for Lorentz and polarization effects. The space group $P2_1/c$ (No. 14) was uniquely defined by systematic absences. A numerical absorption correction, ABSCOR,²⁴ was applied. The structure was solved by direct method, MULTAN.²⁵ Successive difference Fourier maps and least-squares refinement cycles, XRAY 76,²⁶ revealed the positions of all atoms. All non-hydrogen atoms were refined anisotropically. ORTEP27 was used for molecular drawings.

The reactions of this work are summarized in Scheme I. The infrared and ¹H, ¹⁹F, and ¹³C NMR spectroscopic data for the compounds 3a-I are presented in Tables III and IV. An X-ray crystal structure determination was undertaken for Fe₁(CO)₈- $(\mu_3$ -CF) $(\mu_3$ -CF-CH-C-O-C₂H₅) (3c). The data are summarized in Table I. The final fractional atomic coordinates are listed in Table II. Important bond lengths and angles are summarized

- (24) Burnham, C. W. Am. Mineral. 1966, 51, 159. Modified by W. Dreissig, Freie Universität Berlin
- Germain, G.; Main, P.; Woolfson, M. M. Acta Crystallogr., Sect. A (25) 1971, A27, 368.
- Stewart, J. M. Program System for X-ray Crystallography. Computer (26)Science Center, University of Maryland, 1976. Johnson, C. K. ORTEP II. Report ORNL-5138; Oak Ridge National
- (27)Laboratory: Oak Ridge, TN, 1970.

 Table II.
 Atomic Coordinates for Non-Hydrogen Atoms (Standard Deviations in Parentheses)

atom	x	у	2
Fel	0.30014 (4)	-0.11573 (7)	0.80264 (4)
Fe2	0.18683 (3)	0.11011 (7)	0.77837 (4)
Fe3	0.35663 (4)	0.17170 (8)	0.83122 (4)
C1	0.2304 (3)	-0.2880 (6)	0.8070 (3)
C2	0.3960 (3)	-0.2284 (7)	0.8604 (3)
C3	0.1608 (3)	0.2594 (5)	0.6863 (3)
C4	0.1554 (3)	0.2399 (5)	0.8643 (3)
C5	0.0819 (3)	0.0031 (6)	0.7654 (3)
C6	0.3479 (3)	0.3083 (6)	0.9234 (3)
C7	0.3504 (3)	0.3340 (7)	0.7482 (3)
C8	0.4749 (3)	0.1538 (7)	0.8817 (3)
С9	0.2776 (3)	0.0246 (5)	0.8847 (3)
C10	0.3696 (3)	0.0241 (5)	0.7315 (3)
C11	0.3031 (3)	-0.0437 (6)	0.6631 (3)
C12	0.2170 (3)	-0.0353 (5)	0.6805 (3)
C13	0.1566 (4)	-0.2037 (8)	0.5474 (4)
C14	0.0672 (6)	-0.264 (1)	0.4996 (6)
O1	0.1846 (3)	-0.3961 (5)	0.8106 (3)
O2	0.4564 (3)	-0.2990 (6)	0.8989 (3)
O3	0.1442 (2)	0.3519 (4)	0.6280 (2)
O4	0.1341 (2)	0.3162 (4)	0.9193 (2)
O5	0.0158 (2)	-0.0621 (5)	0.7593 (3)
O6	0.3445 (3)	0.3959 (5)	0.9820 (3)
07	0.3467 (3)	0.4370 (5)	0.6955 (3)
O8	0.5496 (2)	0.1447 (6)	0.9131 (3)
O9	0.1451 (2)	-0.1055 (4)	0.6245 (2)
F 1	0.2711 (2)	0.0176 (2)	0.9736 (1)
F2	0.4537 (2)	-0.0031 (4)	0.7184 (2)

in Table V. The molecular structure and atom-numbering scheme are depicted in FIgure 1.

Figure 1. ORTEP plot of 3c. Thermal ellipsoids are at 50% probability.

Discussion

Nonacarbonylbis(μ_3 -fluoromethylidyne)triiron (1) reacts with various alkynes H-C=C-R (2a-f) and H₃C-C=C-R (2g-l) with carbon-carbon bond formation yielding diferra-allyl clusters (Scheme I). The ratio of the isomers was monitored by ¹⁹F NMR spectroscopy, and in contrast to the reaction of Fe₃(CO)₉(μ_3 -C-CH₃)(μ_3 -C-OC₂H₅) with alkynes⁵ no ferrole type cluster has been observed among the products. Within the limits of the NMR sensitivity the hydrogen-substituted alkynes **2a**-f yield only one of the two possible isomers, whereas the methyl-substituted alkynes **2g**-I yield both isomers in a ratio depending on the size and

IR,4 cm ⁻¹	¹ H NMR, ^b ppm	¹⁹ F NMR, ^c ppm	¹³ C NMR, ^b ppm
2088 (w), 2061 (w), 2042 (vs), 2028 (s), 2015 (w), 2005 (m)	3.02 (CF-CH-CCH ₃), 7.24 (CF-CH-CCH ₃) $({}^{3}J_{HF} = 9)$	$\begin{array}{l} Fe_{3}(CO)_{8}(\mu_{3}\text{-}CF)(\mu_{3}\text{-}CF-CH-CCH)\\ 91.0 \ (\mu_{3}\text{-}CF), \\ -5.2 \ (CF-CH-CCH_{3}) \\ (^{3}J_{\rm HF}=9) \end{array}$	$ I_3) (3a) 37.3 (CF-CH-C-CH_3), 120.4 (CF-CH-C-CH_3) ({}^2J_{CF} = 20), 204.4 and 207.3 (CO), 208.1 (CF-CH-C-CH_3) ({}^3J_{CF} = 16), 241.6 (CF-CH-C-CH_3) ({}^1J_{CF} = 349), 333.2 (\mu_3-CF) ({}^1J_{CF} = 480) $
2087 (m), 2045 (s), 2029 (vs), 2008 (s), 2000 (m)	7.9 (CF-CH-CC ₆ H ₅)	$Fe_{3}(CO)_{8}(\mu_{3}\text{-}CF)(\mu_{3}\text{-}CF-CH-CC_{6}H) = \frac{92.1 (\mu_{3}\text{-}CF)}{-6.8 (CF-CH-CC_{6}H_{5})} = \frac{6.8 (CF-CH-CC_{6}H_{5})}{(^{3}J_{HF} = 9.8)}$	H ₅) (3b) 120.9 (CF-CH-C-C ₆ H ₅) (${}^{2}J_{CF}$ = 21), 207.2 (CF-CH-C-C ₆ H ₅) (${}^{3}J_{CF}$ = 5), 241.1 (CF-CH-C-C ₆ H ₅) (${}^{1}J_{CF}$ = 348), 333.6 (μ_{3} -CF) ${}^{1}J_{CF}$ = 479), 127.6, 128.7, 129.0, and 151.1 (C ₆ H ₅), 204.2 (${}^{3}J_{CF}$ = 3) (CO), 207.8 (CO)
2087 (w), 2046 (s), 2038 (vs), 2027 (s), 2011 (m), 1995 (w)	F 1.43 (CF-CH-COCH ₂ CH ₃) (${}^{3}J_{HH} = 7.1$), 3.99 (CF-CH-COCH ₂ CH ₃). 4.29 (CF-CH-COCH ₂ CH ₃) ($J_{ab} = -8.67$), 7.01 (CF-CH-COCH ₂ CH ₃) (${}^{3}J_{HF} = 9.3$)	⁵ e ₃ (CO) ₈ (μ ₃ -CF)(μ ₃ -CF-CH-COC ₂ 86.7 (μ ₃ -CF), -9.4 (CF-CH-COCH ₂ CH ₃) (³ J _{HF} = 9.3)	
2087 (m), 2041 (vs), 2029 (s), 2012 (m), 2000 (m)	Fe 0.47 $[\mu_3$ -CF-CH-CSi(CH ₃) ₃], 7.7 $[\mu_3$ -CF-CH-CSi(CH ₃) ₃] (³ J _{HF} = 9.5)	cO) ₈ (μ ₃ -CF)[μ ₃ -CF-CH-CSi(C] 92.1 (μ ₃ -CF), -2.2 [μ ₃ -CF-CH-CSi(CH ₃) ₃]	H ₃) ₃] (3d) 125.4 [μ_3 -CF-CH-CSi(CH ₃) ₃] (${}^{2}J_{CF} = 20$, ${}^{1}J_{CH} = 164$), 205.3 [μ_3 -CF-CH-CSi(CH ₃) ₃] (${}^{3}J_{CF} = 11$), 241.5 [μ_3 -CF-CH-CSi (CH ₃) ₃] (${}^{1}J_{CF} = 353$), 334.5 (μ_3 -CF) (${}^{1}J_{CF} = 479$), 204.1 and 208.5 (CO), 206 (br, CO), 2.1 [μ_3 -CF-CH-CSi(CH ₃) ₃] (${}^{1}J_{CH} = 118.4$)
2097 (m), 2055 (vs), 2047 (m), 2038 (s), 2024 (m), 2019 (m)	7.86 (CF-C <i>H</i> -CCF ₃) $({}^{3}J_{\rm HF} = 9.2)$	$\begin{array}{l} \text{Fe}_{3}(\text{CO})_{8}(\mu_{3}\text{-}\text{CF})(\mu_{3}\text{-}\text{CF}\text{-}\text{CH}\text{-}\text{CCH}\\ 100.9\ (\mu_{3}\text{-}\text{CF}),\\ -2.7\ (\text{CF}\text{-}\text{CH}\text{-}\text{CCF}_{3})\\ ({}^{3}J_{\text{HF}}=9.2),\\ -52.6\ (\text{CF}\text{-}\text{CH}\text{-}\text{CCF}_{3}) \end{array}$	F ₃) (3e) 120.8 (CF-CH-CCF ₃) $({}^{3}J_{CF} = 6, {}^{2}J_{CF} = 24)$, 128.7 (CF-CH-CCF ₃) $({}^{1}J_{CF} = 276)$, 181.7 (CF-CH-CCF ₃) (${}^{2}J_{CF} = 33, {}^{3}J_{CF} = 17)$, 239.3 (CF-CH-CCF ₃) (${}^{1}J_{CF} = 349$), 348.6 (μ_{3} -CF) (${}^{1}J_{CF} = 482$), 202.9 and 204.7 (CO), 206 (br, CO)
2098 (vw), 2058 (vs), 2040 (s), 2028 (vw), 2003 (vw)	8.06 (CF-C <i>H</i> -CSF ₅) ${}^{3}J_{\rm HF} = 9.7$)	$Fe_{3}(CO)_{8}(\mu_{3}-CF)(\mu_{3}-CF-CH-CSI)$ 101.6 ($\mu_{3}-CF$), -4.3 (CF-CH-CSF ₅), 87.1 (CF-CH-CSF ₅), 73.0 (CF-CH-CSF ₅), ($J_{AB} = 146$)	F ₅) (3f) 124.6 (CF-CH-CSF ₅) (${}^{2}J_{CF} = 24$, ${}^{3}J_{CF} = 7$), 236.6 (CF-CH-CSF ₅) (${}^{1}J_{CF} = 350$), 336.5 (μ_{3} -CF) (${}^{1}J_{CF} = 483$), 206.3 and 204.5 (CO)

^aSolution in *n*-hexane. ^bSolution in CDCl₃; δ (CHCl₃) = 7.24 ppm and δ (CDCl₃) = 77.1 ppm, respectively. J values are in Hz. ^cSolution in CDCl₃; CFCl₃ as external reference standard. J values are in Hz.

Table III.	Spectroscopic	Data for	Compounds	3a-f
------------	---------------	----------	-----------	------

Table IV. Spectroscopic Data for Compounds 3g-1

IR, ^a cm ⁻¹	¹ H NMR, ^b ppm	¹⁹ F NMR, ^c ppm	¹³ C NMR, ^b ppm
2085 (w), 2039 (vs), 2025 (s), 2001 (m)	$Fe_{3}(CO)_{8}(\mu_{3})$ 1.67 [CF-C(CH_{3})-CCH_{2}CH_{3}] (³ J _{HH} = 7.6), 2.38 [CF-C(CH_{3})-CCH_{2}CH_{3}] (⁴ J _{HF} = 3), 3.36-3.58 [CF-C(CH_{3})-CCH_{2}CH_{3}] (abx ₃ pattern)	-CF)[μ ₃ -CF-C(CH ₃)-CC ₂ H ₅] (3(I)g) -0.8 [CF-C(CH ₃)-CCH ₂ CH ₃] (⁴ J _{HF} = 3), 84.4 (μ ₃ -CF)	
	$\begin{array}{l} & \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{l} \text{-CF}[\mu_3\text{-}\text{CF}\text{-C}(\text{C}_2\text{H}_3)\text{-CCH}_3] \; (\textbf{3}(\textbf{II})\textbf{g}) \\ \text{-3.1} \; [\text{CF}\text{-C}(\text{CH}_2\text{CH}_3)\text{-CCH}_3] \\ \text{(}^4J_{\text{HF}} = 3), \; 90.4 \; (\mu_3\text{-CF}) \end{array}$	
2084 (s), 2061 (m), 2038 (vs), 2024 (vs), 2009 (s), 2000 (s), 1979 (m)	$\begin{array}{l} & \mbox{Fe}_{3}(CO)_{8}(\mu_{3}\text{-}C\\ 1.54 \ [CF-C(CH_{3})-CCH(CH_{3})_{2}]\\ ({}^{3}J_{HH}=6.7), \ 1.65\\ [CF-C(CH_{3})-CCH(CH_{3})_{2}]\\ ({}^{3}J_{HH}=7.1), \ 2.34\\ [CF-C(CH_{3})-CCH(CH_{3})_{2}]\\ ({}^{4}J_{HF}=3.6), \ 3.54\\ [CF-C(CH_{3})-CCH(CH_{3})_{2}]\\ ({}^{3}J_{HH}\approx7) \end{array}$	$\begin{aligned} F)[\mu_3-CF-C(CH_3)-CCH(CH_3)_2] & (3(I)h) \\ 89.1 & (\mu_3-CF), 4.7 \\ & [CF-C(CH_3)-CCH(CH_3)_2] \\ & (^4J_{HF} = 3.6) \end{aligned}$	
	$\begin{array}{l} & \ \ \ \ \ \ \ \ \ \ \ \ \$	-CF)[μ ₃ -CF-C(C ₃ H ₇)-CCH ₃] (3(II)h) 90.6 (μ ₃ -CF), 3.6 [CF-C{CH(CH ₃) ₂ -CCH ₃]	
2086 (m), 2080 (m), 2042 (vs), 2033 (s), 2024 (s), 2012 (s), 2005 (s)	$Fe_{3}(CO)_{8}(\mu_{3}, \mu_{3}, \mu_{3},$		124.4 [CF-C(CH ₃)-COCH ₂ CH ₃] (${}^{2}J_{CF}$ = 14.6), 235.1 [CF-C(CH ₃)-COCH ₂ CH ₃] (${}^{3}J_{CF}$ = 15.9), 236.4 [CF-C(CH ₃)-COCH ₂ CH ₃] (${}^{1}J_{CF}$ = 349), 334.0 (μ_{3} -CF) (${}^{1}J_{CF}$ = 479), 205.2 and 206.0 (CO), 15.1 and 15.3 [CF-C(CH ₃)-COCH ₂ CH ₃], 73.1 [CF-C(CH ₃)-COCH ₂ CH ₃]
	Fe ₃ (CO) ₈ (μ ₃ -	$\begin{array}{l} CF{}\left[\mu_{3}\text{-}CF-C(OC_{2}H_{5})\text{-}CCH_{3}\right](3(II)i)\\ 92.5\ (\mu_{3}\text{-}CF),\ -22.1\\ [CF-C(OC_{2}H_{5})\text{-}CCH_{3}] \end{array}$	
2085 (m), 2043 (vs), 2038 (vs), 2027 (s), 2011 (w), 2005 (w), 1994 (w)	$Fe_{3}(CO)_{8}(\mu_{3}) + CC_{6}H_{5}$ $(^{4}J_{HF} = 3.4), 7.71$ $[CF-C(CH_{3})-CC_{6}H_{5}]$	$-CF)[\mu_{3}-CF-C(CH_{3})-CC_{6}H_{5}] (3(I)k)$ 91.3 (μ_{3} -CF), -1.5 [CF-C(CH_{3})-CC_{6}H_{5}] (⁴ J _{HF} = 3.4)	18.5 [CF-C(CH ₃)-CC ₆ H ₅] (${}^{3}J_{CF}$ = 5), 127.4, 127.9, 128.4 and 150.5 [CF-C(CH ₃)-CC ₆ H ₅], 132.4 [CF-C(CH ₃)-CC ₆ H ₅] (${}^{2}J_{CF}$ = 13), 206.5 [CF-C(CH ₃)-CC ₆ H ₅] (${}^{3}J_{CF}$ = 15), 204.0 and 208.6 (CO), 237.5 [CF-C(CH ₃)-CC ₆ H ₅] (${}^{1}J_{CF}$ = 352), 337.7 (μ_{3} -CF) (${}^{1}J_{CF}$ = 479)
2098 (w), 2045 (vs), 2030 (m), 2009 (w)	Fe ₃ (CO) ₈ (µ ₃ -C	F)[μ ₃ -CF-C(COOCH ₃)-CCH ₃] (3(II))) 93.4, -7.4	34.9 [CF-C(COOCH ₃)-CCH ₃], 53.5 [CF-C(COOCH ₃)-CCH ₃], 128.7 [CF-C(COOCH ₃)-CCH ₃] (${}^{2}J_{CF}$ = 17), 164.4 [CF-C(COOCH ₃)-CCH ₃], 198.6 and 206.2 (CO), 202.3 [CF-C(COOCH ₃)-CCH ₃] (${}^{3}J_{CF}$ = 11), 235.1 [CF-C(COOCH ₃)-CCH ₃] (${}^{1}J_{CF}$ = 353), 333.8 (μ_{3} -CF) (${}^{1}J_{CF}$ = 481)

^oSolution in *n*-hexane. ^bSolution in CDCl₃: δ (CHCl₃) = 7.24 ppm and δ (CDCl₃) = 77.1 ppm, respectively. J values are in Hz. ^cSolution in CDCl₃; CFCl₃ as external reference standard. J values are in Hz.

electronic effects of substituent R (Scheme I).

According to the NMR spectroscopic data (Table III) the carbon-carbon bond formation has occurred at the sterically less hindered site at the CH carbon atom. All of these diferra-allyl clusters 3a-f exhibit two signals in the ¹⁹F NMR spectra, one low-field signal, which is due to the fluorine atom of the fluoromethylidyne group, and a signal around zero ppm, which belongs to the diferra-allyl moiety. This high-field signal exhibits a ${}^{3}J$ fluorine-hydrogen coupling constant of 9-10 Hz, proving that the fluorine and hydrogen atoms are in a vicinal position. The coupling constant between the two fluorine atoms is very small (<1.5 Hz) and has been observed only in a few cases. The ¹H NMR spectra of 3a-f exhibit the resonance of the CH group as a doublet between 7.5 and 8.5 ppm besides the resonances of the organic moiety. As the clusters 3a-f are chiral, the protons of the methylene group of 3c are diastereotropic and an ABC₃ pattern was observed for the OC_2H_5 group. The ¹³C{¹H} NMR spectra of all of these compounds show a very low field resonance between 330 and 350 ppm with a very large carbon fluorine coupling constant of about 480 Hz, indicating the presence of a μ_{3^-} fluoromethylidyne ligand. One of the two further low field signals between 200 and 250 ppm, which can be assigned to the terminal carbon atoms of the allyl moiety, possesses a large carbon-fluorine coupling constant of about 350 Hz, whereas the other one shows only a small carbon-fluorine coupling. The resonance of the central carbon atom of the allyl moiety is observed around 120 ppm with a CF coupling constant between 15 and 25 Hz. The carbonyl carbon atoms of the Fe(CO)₂ fragment give sharp signals, whereas the resonances of the Fe(CO)₃ fragments are observed only as broad resonances at ambient temperature due to rapid exchange processes.

In the reaction of $Fe_3(CO)_9(\mu_3-CF)_2$ (1) with the methylsubstituted alkynes 2g-I, however, the ratio of the isomers 3(I)g-I and 3(II)g-I depends on the size and the electronic effects of the

Table V. Selected Interatomic Distances (Å) and Angles (deg) of 3c with Estimated Standard Deviations in Parentheses

	Dist	ances		
Fe1-Fe2	2.505 (1)	Fe3-C10	1.959 (5)	
Fe1-Fe3	2.502 (2)	C9-F1	1.353 (5)	
Fe1-C9	1.767 (5)	C10-C11	1.385 (6)	
Fel-C10	2.022 (5)	C10-F2	1.370 (5)	
Fel-C11	2.174 (5)	C11-C12	1.410 (7)	
Fe1-C12	2.078 (4)	C11-H1	0.94 (5)	
Fe2-Fe3	2.601 (1)	C12-O9	1.351 (5)	
Fe2-C9	1.985 (4)	C13-C14	1.48 (1)	
Fe2-C12	2.015 (5)	C13-O9	1.445 (7)	
Fe3-C9	2.000 (5)			
	A	ngles		
Fe2-Fe1-Fe3	62.59 (4)	Fe2-C9-Fe3	81.5 (2)	
Fe2-Fe1-C10	86.8 (2)	Fe2-C9-F1	127.0 (3)	
Fe2-Fe1-C11	80.2 (2)	Fe3-C9-F1	127.2 (3)	
Fe2-Fe1-C12	51.1 (2)	Fe1-C10-Fe3	77.9 (2)	
Fe3-Fe1-C10	49.9 (2)	Fe1-C10-C11	76.8 (3)	
Fe3-Fe1-C11	80.1 (2)	Fe1-C10-F2	127.9 (3)	
Fe3-Fe1-C12	88.5 (2)	Fe3-C10-C11	128.1 (4)	
C10-Fe1-C11	38.3 (2)	Fe3-C10-F2	118.2 (3)	
C10-Fe1-C12	69.9 (2)	C11-C10-F2	113.2 (4)	
C11-Fe1-C12	38.6 (2)	Fe1-C11-C10	64.9 (3)	
Fe1-Fe2-Fe3	58.65 (3)	Fe1-C11-C12	67.0 (3)	
Fe1-Fe2-C12	53.4 (2)	Fe1-C11-H1	130 (3)	
Fe3-Fe2-C12	87.2 (2)	C10-C11-C12	114.4 (4)	
C9-Fe2-C12	97.8 (2)	C10-C11-H1	121 (3)	
Fe1-Fe3-Fe2	58.77 (3)	C12-C11-H1	123 (3)	
Fe1-Fe3-C10	52.2 (2)	Fe1-C12-Fe2	75.4 (2)	
Fe2-Fe3-C9	49.0 (2)	Fe1-C12-C11	74.3 (3)	
Fe2-Fe3-C10	85.5 (2)	Fe1-C12-O9	131.4 (3)	
C9-Fe3-C10	96.4 (2)	Fe2-C12-C11	123.0 (3)	
Fe1-C9-Fe2	83.5 (2)	Fe2-C12-O9	113.9 (3)	
Fe1-C9-Fe3	83.0 (2)	C11-C12-O9	122.5 (4)	
Fe1-C9-F1	136.2 (3)			

substituent R. In accordance with the above discussion of the NMR spectroscopic data (Tables III and IV) of 3a-f, both isomers 3(I)g-I and 3(II)g-I possess a diferra-allyl structure (Scheme I).

On the basis of the ¹H NMR spectra of the compounds 3(I)g-I and 3(II)g-I (Table IV), the major isomers 3(I)g-k and 3(II)I were formed. The ¹H NMR spectra of the isomers I, which have the methyl substituent in the position vicinal to the fluorine substituent, exhibit a splitting of the resonances of the methyl protons into a doublett due to coupling to ¹⁹F with ${}^{4}J_{\rm HF} \approx 2-4$ Hz. In addition, these resonances are generally observed at higher field than the resonances of the methyl protons of isomer II.

For the substituents $R = C_2H_5$ and *i*-C₃H₇, which are only slightly larger than the methyl substituent, only a small preference of the isomers 3(I)g and 3(I)h versus 3(II)g and 3(II)h is observed. In addition, the ethyl and ispropyl group have the same electronic effect as that of the methyl group. With substituents on the alkyne with a -I and +M effect ($R = OC_2H_5$, C_6H_5), for 2i-k the formation of the isomer I is highly favored. With the ethoxy group, a 3(I)i:3(II)i ratio of 9:1 is observed. The phenyl substituent results in the formation of only the isomer 3(I)k within the limits of sensitivity of ¹⁹F NMR spectroscopy.

Surprisingly the reaction of 1 with the alkyne $H_3C-C=C-C$ - $OOCH_3$ (21) yields only the isomer 3(II), as can be seen by the missing coupling of the methyl protons to the fluorine substituent and the low-field resonance of these protons. In addition the ¹³C resonance of the methyl carbon atom is shifted to 34.9 ppm compared to 15.1 and 18.5 ppm for 3(I)i and 3(I)k. These results may be rationalized as follows: The carboethoxy group possesses a -I and -M effect, whereas both the phenyl and ethoxy substituents have -I and +M effects. Thus, the different sides of alkylidyne-alkyne coupling with the methyl-substituted derivatives can be a result of the electronic effects of the substituents. However, further investigations of the electronic effects on the regioselectivity of this carbon-carbon bond formation reaction are necessary. However, the reaction of the alkynes H-C = C-R(2a-f) is strictly regioselective, resulting in only the isomer I independent of the electronic effects of the substituents. Thus, the regioselectivity of the alkylidyne-alkyne coupling reaction of 1 is much more distinct than the reaction of $Ru_3(H)_3(CO)_9$ - $(\mu_3$ -CX), which even for the hydrogen-substituted alkynes $HC \equiv CR$ (R = Ph, *n*-Bu, *t*-Bu, CO_2Me) results in mixtures of the two isomers.^{16a} In addition 1,3-dimetalla-substituted allyls are not products from the reaction of $Co_3(CO)_9(\mu_3-CX)$ clusters with alkynes.²⁸ None of these clusters **3a-I** show any tendency at ambient temperature to undergo isomerization to the corresponding ferrole clusters, which have been obtained by Mathieu et al. on the thermal reaction of $Fe_3(CO)_9(\mu_3-CCH_3)(\mu_3-C OC_2H_5$ ⁵ with alkynes. However, whereas $Fe_3(CO)_9(\mu_3$ -CF)(μ_3 -CF-CPh-CPh) can be prepared both thermally and photochemically,¹¹ Fe₃(CO)₉(μ_3 -CF)(μ_3 -CF-CCH₃-CCH₃) decomposes at 100 °C, forming three products²⁹ including at least one ferrole type cluster.

Structure of Fe₃(CO)₈(μ_3 -CF)(μ_3 -CF-CH-C-OC₂H₅) (3c). In accordance with spectroscopic data, the results of the X-ray crystal structure determination of $Fe_3(CO)_8(\mu_3-CF)(\mu_3-CF-CH-C OC_2H_5$ (3c) (Figure 1, Tables I, II, and V) demonstrate that the carbon-carbon bond formation has occurred at the sterically less hindered side of the alkyne.

The molecule $Fe_3(CO)_8(\mu_3-CF)(\mu_3-CF-CH-C-OC_2H_5)$ (3c) consists of a isosceles iron triangle, which is capped by one fluoromethylidyne group. The two iron-iron bonds (Fe1-Fe2, Fe1-Fe3), which are bridged by the allyl moiety, are about 10 pm shorter than the other iron-iron bond (Fe2-Fe3). In addition, the distance of the unique iron atom Fe1 to the apical carbon atom C9 (176.7 (5) pm) is significantly shorter than those to the remaining iron atoms Fe2 and Fe3 (Fe2-C9 = 198.5 (4) pm, Fe3-C9 = 200.0(5) pm), which are very similar. The terminal carbon atoms of the C₃ moiety, C10 and C12, show similar distances to the iron atoms Fe1, Fe3 and Fe1, Fe2, respectively, in a range from 195.9 (5) to 207.8 (5) pm. The central atom of the C_3 moiety is bonded only to the iron atom Fe1 with a relatively long distance of 217.4 (5) pm. According to the bond lengths and angles, the Fe3-CF-CH-C(OC₂H₅)-Fe2 moiety can be regarded as a 1,3-diferra-substituted allyl ligand, which is coordinated to the iron atom Fe1. In an alternative description the atoms Fe2, Fe3, C10, C11, C12, and Fe1 form a pentagonal nido cluster, which is capped by a fluoromethylidyne group. This description is in accord with Wade's rules,³⁰ although the cluster possesses the less common capped nido structure. The ferrole type clusters of Mathieu et al.⁵ can be regarded as isomeric closo clusters.

Acknowledgment. This research was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We acknowledge Prof. Dr. J. Fuchs for his assistance in the crystallographic work.

Supplementary Material Available: For 3c, tables listing full crystallographic data, positional and thermal parameters, and interatomic distances and angles (5 pages); listings of observed and calculated structure factors (20 pages). Ordering information is given on any current masthead page.

- Dickson, R. S.; Tailby, G. R. Aust. J. Chem. 1970, 23, 229. Lentz, D.; Michael-Schulz, H. Unpublished results. (28)
- (30) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1.